Low Resource ASR: The surprising effectiveness of High Resource Transliteration

Shreya Khare†,1, Ashish Mittal†,1, Anuj Diwan†,2, Sunita Sarawagi2, Preethi Jyothi2, Samarth Bharadwaj1

1 IBM Research 2 IIT Bombay

† Equal contribution

Slides by Anuj Diwan
Introduction
Motivations

Many advances in speech and NLP are powered by availability of data.

Only high-resource languages consistently benefit!

Reference:
Motivations

A vast majority of the 7000 languages of the world, including most *Indian* languages, fall in the low-resource category.

Techniques for low-resource languages need to be less *data-intensive* and often require interesting, radically new approaches.

Reference:
Automatic Speech Recognition

Convert an input speech signal to its corresponding transcript.

Reference:
https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-with-deep-learning-28293c162f7a
Low-resource Speech Recognition

Developing **Automatic Speech Recognition (ASR)** techniques for **low-resource** languages.

In this paper, we explore a **Transliteration-based Transfer** approach for low-resource multilingual ASR.
Transliteration-based Transfer
Low Resource ASR: The surprising effectiveness of High Resource Transliteration

Shreya Khare†,1, Ashish Mittal†,1, Anuj Diwan†,2, Sunita Sarawagi2, Preethi Jyothi2, Samarth Bharadwaj1

1 IBM Research, 2 IIT Bombay

Accepted at Interspeech 2021
Introduction: Transfer Learning

- Using knowledge gained while solving one problem to solve a **different but related** problem.
- Use larger quantities of data from high-resource languages and **transfer** this knowledge to the low-resource language task.
Existing Approach

Pretrain using unlabelled+labelled speech from one (or more) ‘source’ high-resource languages

Learn a general ‘good’ representation of speech

Finetune all/part of model on labelled speech from ‘target’ low-resource language

Given the pretrained model, learn parameters for the specific target language
Existing Approach

What if source and target languages have disjoint grapheme spaces?

English: A B C D E F G H I J K L M ...

Hindi: क ख ग घ ङ च छ ज झ ञ ...
Existing Approach

What if source and target languages have disjoint grapheme spaces?

- Pretrain only the encoder of the encoder-decoder ASR architecture.
- Pretrain both the encoder and decoder. Before finetuning, replace output softmax layer with target language output softmax layer.

Sharing across languages is latent and not easily controllable!
Our Approach

Encourage increased sharing across grapheme spaces.

1. **Transliterate** transcriptions in high-resource speech data.
 - *From* high-resource language
 - *To* low-resource language

2. **Pretrain** model on high-resource language using original audio and *transliterated* transcriptions.

3. **Finetune** model using limited data from low-resource language.

We also call our approach Eng2Tgt.
Our Approach

Extended Pretraining ASR
Using speech in **E** with text *transliterated* from **E → T**

Pretrained ASR
Using speech in **high** resource language (**E**) → **Fine-Tuning ASR**
Using speech in **low** resource language (**T**)
Our Approach: Transliteration

<table>
<thead>
<tr>
<th>Language</th>
<th>Transliteration</th>
<th>IPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>en</td>
<td>ground without overbrimming</td>
<td>/ɡɹaʊnd wɪð',aʊt,əvər'brɪmɪŋ/</td>
</tr>
<tr>
<td>hi</td>
<td>प्रांउंड विदांत ओवरब्रिंग</td>
<td>/ɡɾaːˈnuːnd wiːd,ɑːt,əʊvərmɪŋ/</td>
</tr>
<tr>
<td>gu</td>
<td>usraund viñānt oवरब्रिंग</td>
<td>/grəˈnuːnd wɪnənt,əʊvərbrɪmɪŋ/</td>
</tr>
<tr>
<td>bn</td>
<td>প্রাঙ্গন বিদাংত ওবারব্রিং</td>
<td>/ɡɾaʊnd wɪd,ɑːt,əʊvərbrɪmɪŋ/</td>
</tr>
<tr>
<td>te</td>
<td>ప్రాంగన విదంతో ఓబర్బ్రింంంంంం</td>
<td>/ɡɾuːnd vɨtaːtəʊərˌbrɪmɪŋ/</td>
</tr>
<tr>
<td>ko</td>
<td>그라운드 위드호우트 오버브리밍</td>
<td>/kɯɾaʊndw ɯɪð,ʰoʊət,əʊvərˈbrɪmɪŋ/</td>
</tr>
<tr>
<td>am</td>
<td>ጎరুণಡ ይõతõ ఓవర్బ్రింంంంంం</td>
<td>/ɡirounid wɪthˌəʊvərˈbrɪmɪmɪnɪɡ/</td>
</tr>
</tbody>
</table>
Experiments

- **Source language**: English
- **6 languages**: Hindi, Telugu, Gujarati, Bengali, Korean, Amharic (more info: BTP Report)
- **2 ASR architectures**: Transformer [1] and wav2vec2.0 [2]
- **2 Training Durations**:
 - Full and 10-hr for Transformer expts
 - 10-hr and 1-hr for wav2vec2.0 expts

Note: For Amharic and Korean, we only report wav2vec2.0 WERs; the WERs from the Transformer model were unstable, possibly due to poor seeds and require further investigation.

Experiments: Baselines

1. **NoPre**: Train from scratch on low-resource data *without* pretraining.

2. **EngPre**: Pretrain using *untransliterated* text from English data, followed by finetuning on low-resource data.

3. **Tgt2Eng**: Based on [3].
 a. Pretrain using untransliterated text from English data
 b. Transliterate low-resource data transcriptions to English (Latin script) and finetune on this data.
 c. This model produces Latin script transcriptions. Thus, finally, transliterate back to low-resource language script.

Experimental Setup: Transformer

Transformer Architecture for Speech Recognition

We use the ESPNet toolkit to train hybrid CTC-attention Transformers

Major hyperparameters:
- 12 encoder layers with 2048 units
- 6 decoder layers with 2048 units
- 0.3 CTC, 0.7 Attention

More info in the paper

Reference:
Results: Transformer

<table>
<thead>
<tr>
<th>Duration</th>
<th>Method</th>
<th>Hin</th>
<th>Tel</th>
<th>Guj</th>
<th>Ben</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NoPre</td>
<td>16.3</td>
<td>29.5</td>
<td>19.2</td>
<td>36.2</td>
</tr>
<tr>
<td></td>
<td>EngPre</td>
<td>15.6</td>
<td>26.3</td>
<td>17.6</td>
<td>27.2</td>
</tr>
<tr>
<td></td>
<td>Tgt2Eng</td>
<td>25.2</td>
<td>86.4</td>
<td>44.2</td>
<td>75.5</td>
</tr>
<tr>
<td></td>
<td>Eng2Tgt</td>
<td>15.6</td>
<td>25.9</td>
<td>17</td>
<td>26.2</td>
</tr>
<tr>
<td></td>
<td>(Ours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td>NoPre</td>
<td>65.5</td>
<td>87.1</td>
<td>55.2</td>
<td>93.4</td>
</tr>
<tr>
<td></td>
<td>EngPre</td>
<td>29.4</td>
<td>51.9</td>
<td>33.4</td>
<td>57.1</td>
</tr>
<tr>
<td></td>
<td>Tgt2Eng</td>
<td>40.1</td>
<td>91.3</td>
<td>55.8</td>
<td>85.6</td>
</tr>
<tr>
<td></td>
<td>Eng2Tgt</td>
<td>28</td>
<td>48.5</td>
<td>34.4</td>
<td>56.4</td>
</tr>
<tr>
<td></td>
<td>(Ours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Word Error Rate (WER) for different transliteration schemes for the **Transformer** architecture
Results: Transformer

<table>
<thead>
<tr>
<th>Duration</th>
<th>Method</th>
<th>Hin</th>
<th>Tel</th>
<th>Guj</th>
<th>Ben</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NoPre</td>
<td>16.3</td>
<td>29.5</td>
<td>19.2</td>
<td>36.2</td>
</tr>
<tr>
<td></td>
<td>EngPre</td>
<td>15.6</td>
<td>26.3</td>
<td>17.6</td>
<td>27.2</td>
</tr>
<tr>
<td></td>
<td>Tgt2Eng</td>
<td>25.2</td>
<td>86.4</td>
<td>44.2</td>
<td>75.5</td>
</tr>
<tr>
<td></td>
<td>Eng2Tgt (Ours)</td>
<td>15.6</td>
<td>25.9</td>
<td>17</td>
<td>26.2</td>
</tr>
<tr>
<td>Full</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NoPre</td>
<td>65.5</td>
<td>87.1</td>
<td>55.2</td>
<td>93.4</td>
</tr>
<tr>
<td></td>
<td>EngPre</td>
<td>29.4</td>
<td>51.9</td>
<td>33.4</td>
<td>57.1</td>
</tr>
<tr>
<td></td>
<td>Tgt2Eng</td>
<td>40.1</td>
<td>91.3</td>
<td>55.8</td>
<td>85.6</td>
</tr>
<tr>
<td></td>
<td>Eng2Tgt (Ours)</td>
<td>28</td>
<td>48.5</td>
<td>34.4</td>
<td>56.4</td>
</tr>
<tr>
<td>10 hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **NoPre** is worse than all three methods that use the English corpus.
- Our approach is better than baselines in most cases.
- Larger gains in low-resource 10-hour setting.
- Tgt2Eng is worse than all other methods. Likely due to lossy transliterations:

 चीफ -> chif -> चिफ
 निर्णयों -> nirnyon -> निर्णयोन
 आर्थिक -> aarthik -> आर्थिक
 पीपोदर -> pepodar -> पेरोदर
Experimental Setup: wav2vec2.0

wav2vec2 Architecture for Speech Recognition

We use the [fairseq](https://github.com/pytorch/fairseq) toolkit

Model architecture and training schedules are according to the wav2vec2.0 paper

Before pretraining, all methods are **initialized** using the wav2vec2.0 model estimated using **unsupervised pretraining** on the complete Librispeech dataset

Thus, the **NoPre** baseline is replaced with the **SelfSup** baseline.

*Reference:

More info in the paper
Results: wav2vec2.0

<table>
<thead>
<tr>
<th>Method</th>
<th>Hin</th>
<th>Tel</th>
<th>Guj</th>
<th>Ben</th>
<th>Kor</th>
<th>Amh</th>
</tr>
</thead>
<tbody>
<tr>
<td>SelfSup</td>
<td>23.8</td>
<td>35.7</td>
<td>25.2</td>
<td>29.4</td>
<td>21.79(14.3)</td>
<td>26.54</td>
</tr>
<tr>
<td>EngPre</td>
<td>24.0</td>
<td>37.6</td>
<td>25.0</td>
<td>32.3</td>
<td>13.16(9.4)</td>
<td>26.78</td>
</tr>
<tr>
<td>Ours</td>
<td>23.6</td>
<td>34.5</td>
<td>23.2</td>
<td>28.2</td>
<td>13.16(9.6)</td>
<td>27.32</td>
</tr>
</tbody>
</table>

Word Error Rate (WER) for different transliteration schemes for the wav2vec2.0 architecture. For Korean, Character Error Rate (CER) also reported in parentheses.

Note: We dropped Tgt2Eng since it fared badly in the Transformer expts.
Results: wav2vec2.0

<table>
<thead>
<tr>
<th>Method</th>
<th>Hin</th>
<th>Tel</th>
<th>Guj</th>
<th>Ben</th>
<th>Kor</th>
<th>Amh</th>
</tr>
</thead>
<tbody>
<tr>
<td>SelfSup</td>
<td>23.8</td>
<td>35.7</td>
<td>25.2</td>
<td>29.4</td>
<td>21.79 (14.3)</td>
<td>26.54</td>
</tr>
<tr>
<td>EngPre</td>
<td>24.0</td>
<td>37.6</td>
<td>25.0</td>
<td>32.3</td>
<td>13.16 (9.4)</td>
<td>26.78</td>
</tr>
<tr>
<td>Ours</td>
<td>23.6</td>
<td>34.5</td>
<td>23.2</td>
<td>28.2</td>
<td>13.16 (9.6)</td>
<td>27.32</td>
</tr>
<tr>
<td>SelfSup</td>
<td>28.9</td>
<td>42.1</td>
<td>57.1</td>
<td>83.1</td>
<td>99.87 (83.3)</td>
<td>52.30</td>
</tr>
<tr>
<td>EngPre</td>
<td>29.9</td>
<td>48.1</td>
<td>62.1</td>
<td>92.3</td>
<td>66.36 (40.8)</td>
<td>53.75</td>
</tr>
<tr>
<td>Ours</td>
<td>28.5</td>
<td>41.5</td>
<td>55.2</td>
<td>88.9</td>
<td>62.08 (37.2)</td>
<td>53.29</td>
</tr>
</tbody>
</table>

- wav2vec SelfSup much better than Transformer NoPre
- Our method clearly outperforms EngPre in most settings on all languages
- Major exception is Amharic; we investigate this further

Our approach works even on a SOTA system like wav2vec that leverages powerful pretrained models!
Analysis and Discussions

Under what conditions is our approach most effective?

We propose that **two** properties should simultaneously hold:

- **High acoustic consistency** of the transliteration library
- **High phonological overlap** between the two languages
Analysis: Methodology

1. **Acoustic Consistency of Transliterations:**
 - Convert original English text to IPA (phones) using a g2p tool *(epitran)*
 - Convert transliterated text to IPA using native-language g2p tools
 - Compute PER between the two IPA sequences

2. **Phonological Similarity between Languages:**
 - Compute unigram distribution of phones in English and in low-resource language
 - Compute KL divergence between the two distributions
Analysis: Results

<table>
<thead>
<tr>
<th>Language</th>
<th>am</th>
<th>bn</th>
<th>hi</th>
<th>te</th>
<th>gu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transliteration PER</td>
<td>89</td>
<td>90</td>
<td>76</td>
<td>82</td>
<td>72</td>
</tr>
<tr>
<td>KL dist phones</td>
<td>8.2</td>
<td>13.6</td>
<td>10.2</td>
<td>11.4</td>
<td>15.6</td>
</tr>
</tbody>
</table>

- For Hindi and Telugu, where KL dist is low and PER is low, we get consistent improvements in results.
- Amharic has a large PER, which may explain its poor performance. However, more investigation is needed, since its KL dist is very low.
Analysis: Effect of Related Languages

<table>
<thead>
<tr>
<th></th>
<th>Full</th>
<th>10 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hin2Tgt</td>
<td>18.3</td>
<td>35.4</td>
</tr>
<tr>
<td>Eng2Tgt40</td>
<td>21.3</td>
<td>38.1</td>
</tr>
</tbody>
</table>

WERs for Gujarati when pretrained using two approaches:

Hin2Tgt: Pretrain on 40 hrs of Hindi transliterated to Gujarati

Eng2Tgt40: Pretrain on 40 hrs of English transliterated to Gujarati

Pretraining on a related language helps!
Analysis: EngPre vs Eng2Tgt

Our analysis indicates that:

In **EngPre**, pretraining lets the model learn sound clusters, and then the fine-tuning phase is used to learn character labels for each such sound, in addition to learning new sounds which are missing in the English speech data.

In **Eng2Tgt**, the fine-tuning phase focuses more on the second aspect (learning new sounds) as the pretraining phase already attaches character labels to the sound clusters.
Future Work

- Extending this approach to multilingual ASR.
- Extending this approach to languages with no transliteration systems.
Thank you!