

Zero-shot Video Moment Retrieval With Off-the-Shelf Models

Anuj Diwan*, Puyuan Peng*, Raymond Mooney
Department of Computer Science, The University of Texas at Austin
Austin, Texas, USA (* Equal contribution)

Transfer Learning for NLP Workshop

1. Introduction

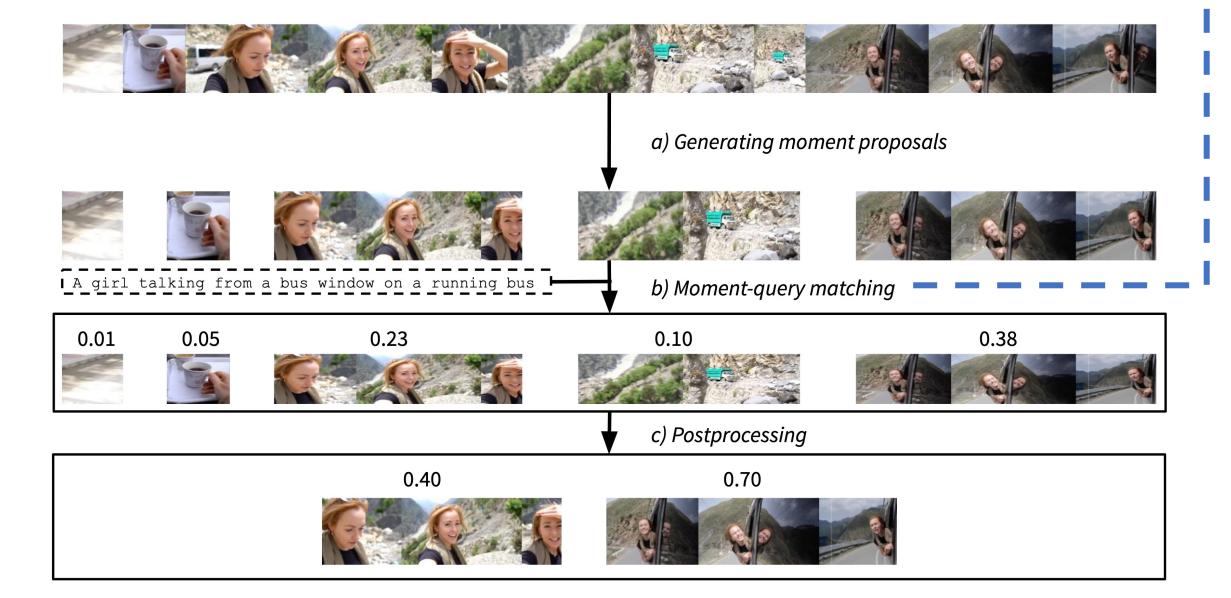
Given a video and a natural language query, the task of Video Moment Retrieval (VMR) involves temporally localizing moments (video segments) within the given video that are relevant to the query

Query: a girl talking from a bus window on a running bus

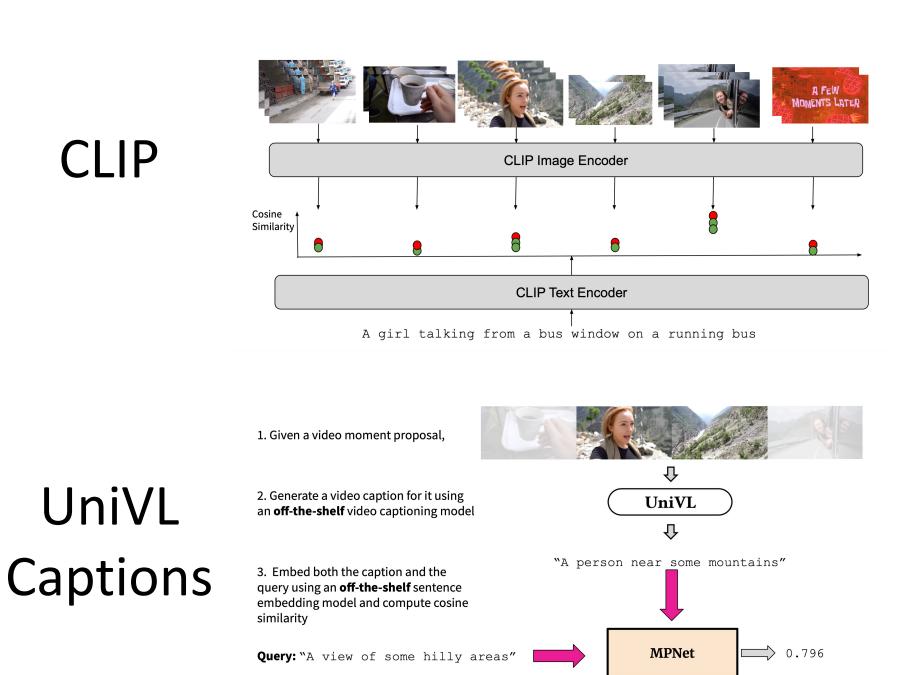
2. Our Approach

No newly trained models; Zero-shot transfer from off-the-shelf models (CLIP/UniVL) to VMR!

2.1 Overall Procedure



-> 2.2 Moment-Query Matching



3. Key Results

- 1. Best Zero-shot Performance
- 2. Better Performance than some Supervised approaches!

(that do not use labor-intensive frame-wise saliency loss or compute-intensive pretraining)

3. Great Performance forShort Segment Detection

Method	Long	Medium	Short	
M-DETR w/ PT ShotDetect+CLIP	45.18 27.49	37.53 26.15	3.50 7.08	

4. But there's room for improvement

4.1 Our query-moment matchers are still far away from the best possible 'oracle' query-moment matchers

Method	R	mAP	
Metriod	@0.5	@0.7	avg
ShotDetect + CLIP ShotDetect + Fine-tuned-CLIP ShotDetect + Oracle Matcher	40.24 42.12 63.94	25.94 27.89 41.49	24.82 25.50 30.98
Supervised UMT (SoTA)	60.83	43.26	38.08

4.2 We do not beat pretrained + supervised VMR approaches, despite using a pretrained V+L model (CLIP)

Category Method	R1		mAP			
		@0.5	@0.7	@0.5	@0.75	avg
Zero Shot	CLIP+Watershed((Lei et al., 2021)) SlidingWindow + VideoCaptioning (Ours) ShotDetect+VideoCaptioning (Ours) SlidingWindow + CLIP (Ours) ShotDetect+CLIP (Ours) ShotDetect+CLIP+SimpleWatershed (Ours)	16.88 19.60 22.25 29.71 40.24 48.33	5.19 6.00 14.71 8.86 25.94 30.96	18.11 25.94 28.90 35.26 41.74 46.94	7.00 6.00 17.30 8.31 24.11 25.75	7.67 9.58 18.06 13.42 24.82 27.96
VMR-Sup	MCN*(Hendricks et al. (2017)) CAL*(Escorcia et al. (2019)) XML*(Lei et al. (2020)) M-DETR w/o saliency loss(Lei et al. (2021))	11.41 25.49 41.83 45.03	2.72 11.54 30.35 25.81	24.94 23.40 44.63 48.42	8.22 7.65 31.73 21.91	10.67 9.89 32.14 24.68
VMR-Sup+Saliency	XML+*(Lei et al. (2021)) M-DETR*(Lei et al. (2021)) M-DETR w/ PT(Lei et al. (2021)) M-DETR w/ PT*(Lei et al. (2021)) UMT*(Liu et al. (2022)) UMT w/ PT*(Liu et al. (2022))	46.69 52.89 59.74 59.78 56.23 60.83	33.46 33.02 41.10 40.33 41.18 43.26	47.89 54.82 59.90 60.51 53.83 57.33	34.67 29.40 35.42 35.36 37.01 39.12	34.90 30.73 36.19 36.14 36.12 38.08

4. Conclusion

- 1. A simple shot detector reveals CLIP's query-moment matching power and leads to performance close to some supervised approaches on VMR.
- 2. The shot detection method is espeically good at **detecting short segments**, outperforming strong supervised and pretrained models.
- 3. Despite the simplicity of the shot detector, CLIP is not the best query-moment matcher for it; there's quite some room for improved matchers.