Reduce and Reconstruct: ASR for Low-Resource Phonetic Languages

Anuj Diwan, Preethi Jyothi

Department of Computer Science and Engineering, Indian Institute of Technology Bombay, India

Introduction

- A seemingly simple but effective technique to improve E2E ASR systems for low-resource phonetic languages.
- E2E ASR is an attractive choice since speech is mapped directly to graphemes or subword units derived from graphemes.
- However, it is also very data-intensive and tends to underperform on low resource languages.

Introduction

- In our approach, we train two modules:
 - a. an ASR system with a linguistically-motivated reduced output alphabet.
 For the ASR model, it is easier to learn and less data-intensive. (*reduce*)
 - b. an FST-based reconstructor that recovers sequences in the original alphabet. (*reconstruct*)
- We run experiments on two Indian languages, Gujarati and Telugu.
- With access to only 10 hrs of speech data, we obtain relative WER reductions of up to 7% compared to systems that do not use any reduction.

 Devise a reduced vocabulary that merges acoustically confusable and linguistically discriminative graphemes.

- 2. Given labelled speech data, **transform transcriptions** using the reduction.
- 3. **Train** an **ASR system** that maps the original speech to the reduced transcriptions.

Sound wave saying ભાષા

4. **Train** a **reconstructor** to reconstruct the original grapheme sequence from the reduced grapheme sequence.

- **Input:** reduced-grapheme hypothesis from ASR system.
- Represent as a linear acceptor, H.

- Compose with the Reduction FST, S.
- S is a single-state FST that takes reduced graphemes as input and produces original graphemes as output.
- For example,

- Further compose with the Edit Distance FST, E.
- E is an FST that that takes a grapheme sequence as input. It produces as output all grapheme sequences that satisfy the constraint that every word in the output is within an edit distance of **d** from each word in the input. The allowable edits are substitutions, insertions and deletions.
- Each edit incurs an additive cost λ.
- d and λ are hyperparameters.

- Further compose with the **Dictionary FST**, L.
- We fix a vocabulary; in this case, the set of all ASR training set words.
- L simply maps a sequence of graphemes to a sequence of words (each word is internally represented as an index in the aforementioned vocabulary).
- Out-of-vocabulary words are mapped to a special <unk> word.

- Further compose with the Language Model FST, G.
- G is an n-gram language model trained on ASR training set transcriptions.
- H
 ^o S
 ^e E
 ^o L contains all possible reconstructions. Composing this with G rescores the reconstructions, giving higher scores to meaningful sentences.
- These operations are efficient owing to highly-optimized FST libraries.

- Finally, obtain output O, the best reconstructed sequence, by running a shortest path FST algorithm on the composed FST H ∘ S ∘ E ∘ L ∘ G.
- These operations are efficient owing to highly-optimized FST libraries.

Experiments

- 2 Indian languages: Gujarati, Telugu
- ASR architecture: biLSTM (without and with RNNLM)
- 2 Training Durations: Full and 10-hr
- Gujarati 10-hr experiments on the advanced Conformer ASR architecture

Experimental Setup: BiLSTM (without RNNLM)

biLSTM Architecture for Speech Recognition

We use the <u>ESPNet</u> toolkit to train hybrid CTC-attention biLSTMs

Major hyperparameters:

4 encoder layers: 512 units for Guj, 768 units for Tel 1 decoder layer: 300 units for Guj, 450 units for Tel

0.8 CTC, 0.2 Attention

Reference:

K. Audhkhasi, G. Saon, Z. Tüske, B. Kingsbury and M. Picheny, "Forget a Bit to Learn Better: Soft Forgetting for CTC-Based Automatic Speech Recognition," in Interspeech, 2019.

Experimental Setup: FSTs

- All FSTs were implemented using the <u>OpenFST</u> toolkit.
- The LM FST, **G**, is a 4-gram LM with Kneser-Ney discounting for order 4. It is implemented using <u>SRILM</u>.
- Best tuned values: d=3, $\lambda=5$.

Results: Pre-Reconstruction ASR Experiments

Duration	Reduction	r-WE	R (Guj)	r-WE	R (Tel)
		Dev	Test	Dev	Test
	identity	41.5	43.2	44.1	46.8
Full	$ ho_1$	36.5	39.6	39.3	42.8
	ρ_1 -rand	41.3	42.3	44.2	47.9
	identity	60.2	68.6	64.1	71.4
10 hr	$ ho_1$	53.9	63.6	56.9	66.5
	ρ_1 -rand	63.2	71.8	60.8	69.4

Reduced Word Error Rate (r-WER)

(WERs computed between ASR hypothesis and *reduced* ground truth text)

Identity: Baseline with no reduction ρ_1 : Our reduction

 ρ_1 -rand: Randomized reduction

Results: Pre-Reconstruction ASR Experiments

Duration	Reduction	r-WER (Guj)		r-WER (Tel)	
,		Dev	Test	Dev	Test
	identity	41.5	43.2	44.1	46.8
Full	$ ho_1$	36.5	39.6	39.3	42.8
	$ ho_1$ -rand	41.3	42.3	44.2	47.9
	identity	60.2	68.6	64.1	71.4
10 hr	$ ho_1$	53.9	63.6	56.9	66.5
	$ ho_1$ -rand	63.2	71.8	60.8	69.4

- Lower r-WERs for ρ_1 show that reduction **simplifies** the ASR task
- ρ_1 vs ρ_1 -rand shows that a **principled reduction** is important

Results: Post-reconstruction

d	λ	Reduction	WER	(Guj)	WER	(Tel)
	В	Saseline	Dev 41.5	Test 43.2	Dev 44.1	Test 46.8
0	5	identity $ ho_1$	41.8	43.4 41.9	$\begin{vmatrix} 45.1 \\ 42.1 \end{vmatrix}$	47.7 45.7
3	5	identity $ ho_1$	37.9 37.8	37.8 36.5	40.6 38.5	42.5 41.2

(a) Full training duration.

d	λ	Reduction	WER	(Guj)	WER	(Tel)
	В	Baseline	Dev 60.2	Test 68.6	Dev 64.1	Test 71.4
0	5	$\begin{array}{c c} \text{identity} \\ \rho_1 \end{array}$	60.3	68.6 64.9	64.4 58.4	71.6 67.8
3	5	$\begin{array}{c c} \text{identity} \\ \rho_1 \end{array}$	56.8 53.2	64.9 61.2	59.2 54.3	66.1 63.6

(b) 10-hr training duration.

Word Error Rate (WER)

for different values of d and λ

 ρ 1 is **our approach**.

Results: FST Reconstruction

d	λ	Reduction	WER	(Guj)	WER	R (Tel)
	В	aseline	Dev 41.5	Test 43.2	Dev 44.1	Test 46.8
0	5	identity $ ho_1$	41.8	43.4 41.9	$\begin{vmatrix} 45.1 \\ 42.1 \end{vmatrix}$	47.7 45.7
3	5	identity $ ho_1$	37.9 37.8	37.8 36.5	40.6 38.5	42.5 41.2

(a) Full training duration.

d	λ	Reduction	WER	(Guj)	WER	(Tel)
	Е	Baseline	Dev 60.2	Test 68.6	Dev 64.1	Test 71.4
0	5	$\begin{array}{c c} \text{identity} \\ \rho_1 \end{array}$	$\begin{vmatrix} 60.3 \\ 56.2 \end{vmatrix}$	68.6 64.9	64.4 58.4	71.6 67.8
3	5	$\begin{array}{c c} \text{identity} \\ \rho_1 \end{array}$	56.8 53.2	64.9 61.2	59.2 54.3	66.1 63.6

(b) 10-hr training duration.

- For *d*=0 (exact reconstruction), reduction **outperforms** identity and baseline
- Increasing d improves all WERs as expected; reduction still outperforms the other two
- Improvements are more pronounced in the low-resource 10-hr setting

Experimental Setup: biLSTM (with RNNLM)

- 2 RNNLM layers with 1500 units
- Trained on transcriptions of full speech data

Results: With RNNLM

Duration	Reduction	WER	(Guj)	WER	(Tel)
	Baseline	Dev 37.4	Test 34.0	Dev 37.9	Test 40.0
Full	$\begin{matrix} \text{identity} \\ \rho_1 \end{matrix}$	36.2 37.1	31.8 32.2	37.7 36.5	39.2 38.1
	Baseline	56.2	63.2	56.9	63.8
10-hr	$\frac{\text{identity}}{\rho_1}$	55.5 52.0	62.3 58.2	56.2 51.2	62.5 59.1

Word Error Rate (WER) using reconstructor with d=3, $\lambda=5$ on ASR with RNNLM rescoring

Results: With RNNLM

Duration	Reduction	WER	(Guj)	WER	R (Tel)
	Baseline	Dev 37.4	Test 34.0	Dev 37.9	Test 40.0
Full	$\frac{\text{identity}}{\rho_1}$	36.2 37.1	31.8 32.2	37.7 36.5	39.2 38.1
	Baseline	56.2	63.2	56.9	63.8
10-hr	$\frac{\text{identity}}{\rho_1}$	55.5 52.0	62.3 58.2	56.2 51.2	62.5 59.1

- Baseline with RNNLM is **better** than baseline without RNNLM
- Reduction significantly outperforms identity in the 10-hr setting, doesn't do as well in the Full setting for Guj

Experimental Setup: Conformer

Conformer Architecture for Speech Recognition

We use the <u>ESPNet</u> toolkit to train hybrid CTC-attention Conformers

Major hyperparameters:

2 encoder layers: **350** units, 4 att heads 1 decoder layer: **350** units, 4 att heads

0.3 CTC, 0.7 Attention

Reference:

A. Gulati, J. Qin, C-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang, Z. Zhang, Y. Wu and R. Pang, "Conformer: Convolution-augmented Transformer for Speech Recognition" in Interspeech, 2020.

Results: Conformer on Guj 10-hr

d λ Reduction WER (Guj)

	aseline	Dev 57.7	Test
$\frac{10}{0 \cdot 10}$	7.2 7	20	
$3 \left 10 \right $	identity ρ_1	57.1 57.6	60.5 59.9

Similar trends as for other experiments

Discussion

- **Choice of reduction**: We show in the paper that our reduction is superior to randomized/less compressive reductions.
- Reduction function corrects ASR errors: 16.29% (for Gujarati) and 16.92% (for Telugu) of identity substitutions errors corrected by the reduction.
- **Test-set perplexities:** Reduction function decreases LM perplexity. Larger drop for Telugu corresponds to larger improvements observed for Telugu.

Reduction	Test ppl (Guj)	Test ppl (Tel)
identity	115.05	768.66
$ ho_1$	108.13	706.32

Discussion

• Examples:

```
R: सपाना तेष प्रताप याहवे श्वती छे

(səpa:naː teːɟ prətaːp jaːdʌʋeː ɟiːti cʰeː)

l: सपा भाटे ते प्रताप याहव सीधी छे

(sʌpaː maːteː teː prətaːp jaːdʌʋ liːdʰi cʰeː)

ρ₁: सपाना तेष प्रताप याहवे श्वती छे

(səpaːnaː teːɟ prətaːp jaːdʌʋeː ɟiːti cʰeː)
```

R: ఈతకు వెళ్లి బాలుడి మృతి
(i:taku velli ba:ludi mruti)
I: ఇంకా వెళ్లి బోల్డ్ మృతి
(inka: velli bo:ld mruti)
ρ₁: ఈతకు వెళ్లిన బాలుడి మృతి
(i:taku vellina ba:ludi mruti)

Future Work

- Automatically learning a data-driven reduction mapping.
- Training more powerful sequence-to-sequence reconstruction modules
- **Combine** the two modules into one using a bottleneck layer and multitask learning.
- Instead of the ASR 1-best hypothesis, use the ASR decoding lattice.

Conclusion

- We propose a simple reduce-and-reconstruct technique and demonstrate its utility for two Indian languages.
- We show that as the available training data decreases, our approach yields greater benefits, making it well-suited for low-resource languages.

Short Presentation Slides

Reduce and Reconstruct: ASR for Low-Resource Phonetic Languages

Anuj Diwan, Preethi Jyothi

Department of Computer Science and Engineering, Indian Institute of Technology Bombay, India

Reduce and Reconstruct (RnR)

- Technique to boost end-to-end (E2E) ASR performance on low-resource languages:
 - a. Train an E2E ASR system with a linguistically-motivated reduced output alphabet (*reduce*)
 - Train a standalone FST-based reconstructor that recovers sequences in the original alphabet (*reconstruct*)
- Experiments on Gujarati and Telugu.
- With access to only 10 hrs of speech data, we obtain relative WER reductions of up to 7% compared to baseline systems.

 Devise a reduced vocabulary that merges acoustically confusable and linguistically discriminative graphemes.

- 2. Given labelled speech data, **transform transcriptions** using the reduction.
- 3. **Train** an **ASR system** that maps the original speech to the reduced transcriptions.

Sound wave saying ભાષા

4. **Train** a **reconstructor** to reconstruct the original grapheme sequence.

- Input: Represent as a linear acceptor, H.
- Compose with a cascade of FSTs: S, E, L, G:
 - Using the reduction, S is able to reconstruct all possible sequences.
 - L and G constrain, rank these sequences using language-model scores.

- **Input:** reduced-grapheme hypothesis from ASR system.
- Represent as a linear acceptor, H.

- Compose with the Reduction FST, S.
- S is a single-state FST that takes reduced graphemes as input and produces original graphemes as output.
- For example,

- Further compose with the Edit Distance FST, E.
- E is an FST that that takes a grapheme sequence as input. It produces as output all grapheme sequences that satisfy the constraint that every word in the output is within an edit distance of **d** from each word in the input. The allowable edits are substitutions, insertions and deletions.
- Each edit incurs an additive cost λ.
- d and λ are hyperparameters.

- Further compose with the **Dictionary FST**, L.
- We fix a vocabulary; in this case, the set of all ASR training set words.
- L simply maps a sequence of graphemes to a sequence of words (each word is internally represented as an index in the aforementioned vocabulary).
- Out-of-vocabulary words are mapped to a special <unk> word.

- Further compose with the Language Model FST, G.
- G is an n-gram language model trained on ASR training set transcriptions.
- H
 ^o S
 ^e E
 ^o L contains all possible reconstructions. Composing this with G rescores the reconstructions, giving higher scores to meaningful sentences.
- These operations are efficient owing to highly-optimized FST libraries.

- Finally, obtain output O, the best reconstructed sequence, by running a shortest path FST algorithm on the composed FST H ∘ S ∘ E ∘ L ∘ G.
- These operations are efficient owing to highly-optimized FST libraries.

Experiments

- 2 Indian languages: Gujarati, Telugu
- ASR architecture: Bi-LSTM (without and with RNNLM)
- 2 Training Durations: Full and 10-hr
- Gujarati 10-hr experiments on the advanced Conformer ASR architecture

Results

ASR Architecture	Training-set Duration	Reduction	Gujarati Test WER	Telugu Test WER
biLSTM	Full	none (baseline)	43.2	46.8
		identity	37.8	42.5
		our reduction	36.5	41.2
	10-hr	none (baseline)	68.6	71.4
		identity	64.9	66.1
		our reduction	61.2	63.6

- Reduction **outperforms** identity and baseline
- Improvements are more pronounced in the low-resource 10-hr setting

Results

ASR Architecture	Training-set Duration	Reduction	Gujarati Test WER
		none (baseline)	61.1
Conformer	10-hr	identity	60.4
		our reduction	59.9

Results

ASR Architecture	Training-set Duration	Reduction	Gujarati Test WER	Telugu Test WER
		none (baseline)	34.0	40.0
biLSTM	Full	identity	31.8	39.2
		our reduction	32.2	38.1
(with		none (baseline)	63.2	63.8
RNNLM) 10-hr		identity	62.3	62.5
	our reduction	58.2	59.1	

- Reduction is significantly **better** in the 10-hr setting
- Reduction doesn't do as well in the Full setting for Gujarati

Analysis

- **Choice of reduction**: We show in the paper that our reduction is superior to randomized/less compressive reductions.
- Reduction function corrects ASR errors: 16.29% (for Gujarati) and 16.92% (for Telugu) of identity substitution errors corrected by the reduction.
- Test-set perplexities: Reduction function decreases LM perplexity.

Reduction	Test ppl (Guj)	Test ppl (Tel)
identity	115.05	768.66
our reduction	108.13	706.32

Discussion

• Examples:

```
R: सपाना तेष प्रताप याहवे श्वती छे

(səpa:naː teːɟ prətaːp jaːdʌʋeː ɟiːti cʰeː)

l: सपा भाटे ते प्रताप याहव सीधी छे

(sʌpaː maːteː teː prətaːp jaːdʌʋ liːdʰi cʰeː)

ρ₁: सपाना तेष प्रताप याहवे श्वती छे

(səpaːnaː teːɟ prətaːp jaːdʌʋeː ɟiːti cʰeː)
```

R: ఈతకు వెళ్లి బాలుడి మృతి
(i:taku velli ba:ludi mruti)
I: ఇంకా వెళ్లి బోల్డ్ మృతి
(inka: velli bo:ld mruti)
ρ₁: ఈతకు వెళ్లిన బాలుడి మృతి
(i:taku vellina ba:ludi mruti)

Conclusion and Future Work

- We propose a simple reduce-and-reconstruct (RnR) technique for E2E ASR systems and demonstrate its utility for two phonetic languages.
- As the available training data decreases, RnR yields greater benefits, making it well-suited for low-resource languages.
- Future work includes:
 - Training more powerful sequence-to-sequence reconstruction modules
 - Automatically learning a mapping from the original alphabet to the reduced alphabet

