
Reduce and Reconstruct:
ASR for Low-Resource Phonetic Languages

Anuj Diwan, Preethi Jyothi
Department of Computer Science and Engineering,

Indian Institute of Technology Bombay, India

Introduction
● A seemingly simple but effective technique to improve E2E ASR systems for

low-resource phonetic languages.
● E2E ASR is an attractive choice since speech is mapped directly to

graphemes or subword units derived from graphemes.
● However, it is also very data-intensive and tends to underperform on low

resource languages.

● In our approach, we train two modules:
a. an ASR system with a linguistically-motivated reduced output alphabet.

For the ASR model, it is easier to learn and less data-intensive. (reduce)
b. an FST-based reconstructor that recovers sequences in the original

alphabet. (reconstruct)
● We run experiments on two Indian languages, Gujarati and Telugu.
● With access to only 10 hrs of speech data, we obtain relative WER reductions

of up to 7% compared to systems that do not use any reduction.

Introduction

Our Approach
1. Devise a reduced vocabulary that merges acoustically confusable and

linguistically discriminative graphemes.

ક ખ

ઘ ગ
ક

క ఖ

ఘ గ

క

Gujarati Telugu

k kʰ

ɡʰ ɡ

k

IPA

Our Approach
2. Given labelled speech data, transform transcriptions using the reduction.
3. Train an ASR system that maps the original speech to the reduced

transcriptions.

Sound wave saying
ભાષા

ASR System પસ1-best

Our Approach
4. Train a reconstructor to reconstruct the original grapheme sequence from the

reduced grapheme sequence.

Reconstructor ભાષાપસ

Our Approach: FST-based Reconstructor
● Input: reduced-grapheme hypothesis from ASR system.
● Represent as a linear acceptor, H.

પસ પ:પ સ:સ

Our Approach: FST-based Reconstructor
● Compose with the Reduction FST, S.
● S is a single-state FST that takes reduced graphemes as input and produces

original graphemes as output.
● For example,

ક ખ

ઘ ગ
ક is represented as

ક:ક ક:ખ

ક:ગ
ક:ઘ

Our Approach: FST-based Reconstructor
● Further compose with the Edit Distance FST, E.
● E is an FST that that takes a grapheme sequence as input. It produces as

output all grapheme sequences that satisfy the constraint that every word in
the output is within an edit distance of d from each word in the input. The
allowable edits are substitutions, insertions and deletions.

● Each edit incurs an additive cost λ.
● d and λ are hyperparameters.

Our Approach: FST-based Reconstructor
● Further compose with the Dictionary FST, L.
● We fix a vocabulary; in this case, the set of all ASR training set words.
● L simply maps a sequence of graphemes to a sequence of words (each word

is internally represented as an index in the aforementioned vocabulary).
● Out-of-vocabulary words are mapped to a special <unk> word.

Our Approach: FST-based Reconstructor
● Further compose with the Language Model FST, G.
● G is an n-gram language model trained on ASR training set transcriptions.
● H ∘ S ∘ E ∘ L contains all possible reconstructions. Composing this with G

rescores the reconstructions, giving higher scores to meaningful sentences.
● These operations are efficient owing to highly-optimized FST libraries.

Our Approach: FST-based Reconstructor
● Finally, obtain output O, the best reconstructed sequence, by running a

shortest path FST algorithm on the composed FST H ∘ S ∘ E ∘ L ∘ G.
● These operations are efficient owing to highly-optimized FST libraries.

Experiments
● 2 Indian languages: Gujarati, Telugu
● ASR architecture: biLSTM (without and with RNNLM)
● 2 Training Durations: Full and 10-hr
● Gujarati 10-hr experiments on the advanced Conformer ASR architecture

Experimental Setup: BiLSTM (without RNNLM)

Reference:
K. Audhkhasi, G. Saon, Z. Tüske, B. Kingsbury and M. Picheny,
“Forget a Bit to Learn Better: Soft Forgetting for CTC-Based
Automatic Speech Recognition,” in Interspeech, 2019.

biLSTM Architecture for Speech Recognition

We use the ESPNet toolkit to train hybrid
CTC-attention biLSTMs

Major hyperparameters:
4 encoder layers: 512 units for Guj, 768 units for Tel
1 decoder layer: 300 units for Guj, 450 units for Tel
0.8 CTC, 0.2 Attention

https://github.com/espnet/espnet/

Experimental Setup: FSTs
● All FSTs were implemented using the OpenFST toolkit.
● The LM FST, G, is a 4-gram LM with Kneser-Ney discounting for order 4. It is

implemented using SRILM.
● Best tuned values: d=3, λ=5.

http://www.openfst.org/
http://www.speech.sri.com/projects/srilm/

Results: Pre-Reconstruction ASR Experiments

Reduced Word Error Rate (r-WER)
(WERs computed between ASR
hypothesis and reduced ground

truth text)

Identity: Baseline with no reduction
 ρ1: Our reduction

ρ1-rand: Randomized reduction

Results: Pre-Reconstruction ASR Experiments

● Lower r-WERs for ρ1 show that
reduction simplifies the ASR task

● ρ1 vs ρ1-rand shows that a
principled reduction is important

Results: Post-reconstruction

Word Error Rate (WER)
for different values of d and λ

ρ1 is our approach.

Results: FST Reconstruction

● For d=0 (exact reconstruction), reduction outperforms identity and baseline
● Increasing d improves all WERs as expected; reduction still outperforms the other two
● Improvements are more pronounced in the low-resource 10-hr setting

Experimental Setup: biLSTM (with RNNLM)
● 2 RNNLM layers with 1500 units
● Trained on transcriptions of full speech data

Results: With RNNLM

Word Error Rate (WER)
using reconstructor with d=3, λ=5
on ASR with RNNLM rescoring

Results: With RNNLM

● Baseline with RNNLM is better than
baseline without RNNLM

● Reduction significantly outperforms
identity in the 10-hr setting, doesn’t
do as well in the Full setting for Guj

Experimental Setup: Conformer

Reference:
A. Gulati, J. Qin, C-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu and R. Pang, “Conformer:
Convolution-augmented Transformer for Speech Recognition”
in Interspeech, 2020.

Conformer Architecture for Speech Recognition

We use the ESPNet toolkit to train hybrid
CTC-attention Conformers

Major hyperparameters:
2 encoder layers: 350 units, 4 att heads
1 decoder layer: 350 units, 4 att heads
0.3 CTC, 0.7 Attention

https://github.com/espnet/espnet/

Results: Conformer on Guj 10-hr

Similar trends as for
other experiments

Discussion
● Choice of reduction: We show in the paper that our reduction is superior to

randomized/less compressive reductions.
● Reduction function corrects ASR errors: 16.29% (for Gujarati) and 16.92%

(for Telugu) of identity substitutions errors corrected by the reduction.
● Test-set perplexities: Reduction function decreases LM perplexity. Larger

drop for Telugu corresponds to larger improvements observed for Telugu.

Discussion
● Examples:

Future Work
● Automatically learning a data-driven reduction mapping.
● Training more powerful sequence-to-sequence reconstruction modules
● Combine the two modules into one using a bottleneck layer and multitask

learning.
● Instead of the ASR 1-best hypothesis, use the ASR decoding lattice.

Conclusion
● We propose a simple reduce-and-reconstruct technique and demonstrate its

utility for two Indian languages.
● We show that as the available training data decreases, our approach yields

greater benefits, making it well-suited for low-resource languages.

Short Presentation Slides

Reduce and Reconstruct:
ASR for Low-Resource Phonetic Languages

Anuj Diwan, Preethi Jyothi
Department of Computer Science and Engineering,

Indian Institute of Technology Bombay, India

Reduce and Reconstruct (RnR)
● Technique to boost end-to-end (E2E) ASR performance on low-resource

languages:
a. Train an E2E ASR system with a linguistically-motivated reduced output

alphabet (reduce)
b. Train a standalone FST-based reconstructor that recovers sequences in

the original alphabet (reconstruct)
● Experiments on Gujarati and Telugu.
● With access to only 10 hrs of speech data, we obtain relative WER reductions

of up to 7% compared to baseline systems.

Our Approach
1. Devise a reduced vocabulary that merges acoustically confusable and

linguistically discriminative graphemes.

ક ખ

ઘ ગ
ક

క ఖ

ఘ గ

క

Gujarati Telugu

k kʰ

ɡʰ ɡ

k

IPA

Our Approach
2. Given labelled speech data, transform transcriptions using the reduction.
3. Train an ASR system that maps the original speech to the reduced

transcriptions.

Sound wave saying
ભાષા

ASR System પસ1-best

Our Approach
4. Train a reconstructor to reconstruct the original grapheme sequence.

Reconstructor ભાષાપસ

Our Approach: FST-based Reconstructor
● Input: Represent as a linear acceptor, H.
● Compose with a cascade of FSTs: S, E, L, G:

○ Using the reduction, S is able to reconstruct all possible sequences.
○ L and G constrain, rank these sequences using language-model scores.

Our Approach: FST-based Reconstructor
● Input: reduced-grapheme hypothesis from ASR system.
● Represent as a linear acceptor, H.

પસ પ:પ સ:સ

Our Approach: FST-based Reconstructor
● Compose with the Reduction FST, S.
● S is a single-state FST that takes reduced graphemes as input and produces

original graphemes as output.
● For example,

ક ખ

ઘ ગ
ક is represented as

ક:ક ક:ખ

ક:ગ
ક:ઘ

Our Approach: FST-based Reconstructor
● Further compose with the Edit Distance FST, E.
● E is an FST that that takes a grapheme sequence as input. It produces as

output all grapheme sequences that satisfy the constraint that every word in
the output is within an edit distance of d from each word in the input. The
allowable edits are substitutions, insertions and deletions.

● Each edit incurs an additive cost λ.
● d and λ are hyperparameters.

Our Approach: FST-based Reconstructor
● Further compose with the Dictionary FST, L.
● We fix a vocabulary; in this case, the set of all ASR training set words.
● L simply maps a sequence of graphemes to a sequence of words (each word

is internally represented as an index in the aforementioned vocabulary).
● Out-of-vocabulary words are mapped to a special <unk> word.

Our Approach: FST-based Reconstructor
● Further compose with the Language Model FST, G.
● G is an n-gram language model trained on ASR training set transcriptions.
● H ∘ S ∘ E ∘ L contains all possible reconstructions. Composing this with G

rescores the reconstructions, giving higher scores to meaningful sentences.
● These operations are efficient owing to highly-optimized FST libraries.

Our Approach: FST-based Reconstructor
● Finally, obtain output O, the best reconstructed sequence, by running a

shortest path FST algorithm on the composed FST H ∘ S ∘ E ∘ L ∘ G.
● These operations are efficient owing to highly-optimized FST libraries.

Experiments
● 2 Indian languages: Gujarati, Telugu
● ASR architecture: Bi-LSTM (without and with RNNLM)
● 2 Training Durations: Full and 10-hr
● Gujarati 10-hr experiments on the advanced Conformer ASR architecture

Results
ASR Architecture Training-set

Duration Reduction Gujarati Test
WER Telugu Test WER

biLSTM

Full
none (baseline) 43.2 46.8

identity 37.8 42.5

our reduction 36.5 41.2

10-hr
none (baseline) 68.6 71.4

identity 64.9 66.1

our reduction 61.2 63.6

● Reduction outperforms identity and baseline
● Improvements are more pronounced in the low-resource 10-hr setting

Results
ASR Architecture Training-set

Duration Reduction Gujarati Test
WER

Conformer 10-hr
none (baseline) 61.1

identity 60.4

our reduction 59.9

Results
ASR Architecture Training-set

Duration Reduction Gujarati Test
WER Telugu Test WER

biLSTM

(with
RNNLM)

Full
none (baseline) 34.0 40.0

identity 31.8 39.2

our reduction 32.2 38.1

10-hr
none (baseline) 63.2 63.8

identity 62.3 62.5

our reduction 58.2 59.1

● Reduction is significantly better in the 10-hr setting
● Reduction doesn’t do as well in the Full setting for Gujarati

Analysis
● Choice of reduction: We show in the paper that our reduction is superior to

randomized/less compressive reductions.
● Reduction function corrects ASR errors: 16.29% (for Gujarati) and 16.92% (for

Telugu) of identity substitution errors corrected by the reduction.
● Test-set perplexities: Reduction function decreases LM perplexity.

Reduction Test ppl (Guj) Test ppl (Tel)

identity 115.05 768.66

our reduction 108.13 706.32

Discussion
● Examples:

Conclusion and Future Work
● We propose a simple reduce-and-reconstruct (RnR) technique for E2E ASR

systems and demonstrate its utility for two phonetic languages.
● As the available training data decreases, RnR yields greater benefits, making it

well-suited for low-resource languages.
● Future work includes:

○ Training more powerful sequence-to-sequence reconstruction modules
○ Automatically learning a mapping from the original alphabet to the reduced alphabet

