
Low Resource ASR: The surprising effectiveness
of High Resource Transliteration

Shreya Khare†,1, Ashish Mittal†,1, Anuj Diwan†,2,
Sunita Sarawagi2, Preethi Jyothi2, Samarth Bharadwaj1

1 IBM Research 2 IIT Bombay
† Equal contribution

Slides by Anuj Diwan

Introduction

Motivations
Many advances in speech and NLP are powered by availability of data.

Only high-resource languages consistently benefit!

Reference:
P. Joshi, S. Santy, A. Budhiraja, K. Bali, and M. Choudhury,
“The State and Fate of Linguistic Diversity and Inclusion
in the NLP World,” in ACL, 2020.

Motivations
A vast majority of the 7000 languages of the world, including most Indian
languages, fall in the low-resource category.

Techniques for low-resource languages need to be less data-intensive and often
require interesting, radically new approaches.

Reference:
https://www.pratidintime.com/80-tribal-languages-of-ne-
facing-threat-of-extinction/

Automatic Speech Recognition
Convert an input speech signal to its corresponding transcript.

Reference:
https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-with-deep-learning-282
93c162f7a

Low-resource Speech Recognition
Developing Automatic Speech Recognition (ASR) techniques for low-resource
languages.

In this paper, we explore a Transliteration-based Transfer approach for

low-resource multilingual ASR.

Transliteration-based
Transfer

Accepted at Interspeech 2021

Introduction: Transfer Learning
● Using knowledge gained while solving one problem to solve a different but

related problem.
● Use larger quantities of data from high-resource languages and transfer this

knowledge to the low-resource language task.

Existing Approach
Pretrain using unlabelled+labelled speech from one (or more) ‘source’
high-resource languages

Learn a general ‘good’ representation of speech

Finetune all/part of model on labelled speech from ‘target’ low-resource language

Given the pretrained model, learn parameters for the specific target language

Existing Approach
What if source and target languages have disjoint grapheme spaces?

 English: A B C D E F G H I J K L M ...

Hindi: क ख ग घ ङ च छ ज झ ञ ...

Existing Approach
What if source and target languages have disjoint grapheme spaces?

● Pretrain only the encoder of the encoder-decoder ASR architecture.
● Pretrain both the encoder and decoder. Before finetuning, replace output

softmax layer with target language output softmax layer.

Sharing across languages is latent and not easily controllable!

Our Approach
Encourage increased sharing across grapheme spaces.

1. Transliterate transcriptions in high-resource speech data.
○ From high-resource language
○ To low-resource language

2. Pretrain model on high-resource language using original audio and
transliterated transcriptions.

3. Finetune model using limited data from low-resource language.

We also call our approach Eng2Tgt.

ground -> ग्राउंड
ground -> గ�్రూ ండ్

Our Approach

Our Approach: Transliteration

We use existing off-the-shelf transliteration
systems.

For the 4 Indian languages: indic-trans
For Korean: Microsoft Azure Transliterate API

For Amharic: Google Transliterate API

https://github.com/libindic/indic-trans
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/reference/v3-0-transliterate
https://pypi.org/project/google-transliteration-api/

Experiments
● Source language: English
● 6 languages: Hindi, Telugu, Gujarati, Bengali, Korean, Amharic (more info: BTP Report)

● 2 ASR architectures: Transformer [1] and wav2vec2.0 [2]
● 2 Training Durations:

○ Full and 10-hr for Transformer expts
○ 10-hr and 1-hr for wav2vec2.0 expts

Note: For Amharic and Korean, we only report wav2vec2.0 WERs; the WERs from the Transformer
model were unstable, possibly due to poor seeds and require further investigation.

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, .L Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention Is All You
Need,” in NeurIPS, 2017.

[2] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A framework for self-supervised learning of speech
representations,” in NeurIPS, 2020.

Experiments: Baselines
1. NoPre: Train from scratch on low-resource data without pretraining.
2. EngPre: Pretrain using untransliterated text from English data, followed by

finetuning on low-resource data.
3. Tgt2Eng: Based on [3].

a. Pretrain using untransliterated text from English data
b. Transliterate low-resource data transcriptions to English (Latin script) and finetune on this

data.
c. This model produces Latin script transcriptions. Thus, finally, transliterate back to

low-resource language script.

[3] A. Datta, B. Ramabhadran, J. Emond, A. Kannan, and B. Roark, “Language-Agnostic Multilingual Modeling,” in ICASSP,
2020.

Experimental Setup: Transformer
Transformer Architecture for Speech Recognition

We use the ESPNet toolkit to train hybrid CTC-attention
Transformers

Major hyperparameters:
12 encoder layers with 2048 units
6 decoder layers with 2048 units
0.3 CTC, 0.7 Attention

More info in the paper

Reference:
L. Dong, S. Xu and B. Xu, “Speech-Transformer: A No-Recurrence
Sequence-to-Sequence Model for Speech Recognition,” in
ICASSP, 2018.

https://github.com/espnet/espnet/

Results: Transformer

Word Error Rate (WER)
for different transliteration schemes
for the Transformer architecture

Results: Transformer
● NoPre is worse than All three

methods that use the English corpus
● Our approach is better than baselines

in most cases
● Larger gains in low-resource 10-hr

setting
● Tgt2Eng is worse than all other

methods. Likely due to lossy
transliterations:

चीफ -> chif -> �चफ
�नणर्नयों -> nirnyon -> �ननर्नयोन
આિથર્તિક -> aarthik -> આિતર્તિક
પીપોદર -> pepodar -> પેપોદર

Experimental Setup: wav2vec2.0

wav2vec2 Architecture for Speech Recognition

We use the fairseq toolkit

Model architecture and training schedules are
according to the wav2vec2.0 paper

Before pretraining, all methods are initialized
using the wav2vec2.0 model estimated using
unsupervised pretraining on the complete
Librispeech dataset

Thus, the NoPre baseline is replaced with the
SelfSup baseline.

More info in the paper

Reference:
A Baevski, H Zhou, A Mohamed, and M Auli, “wav2vec 2.0: A framework
for self-supervised learning of speech representations,” in NeurIPS,
2020.

https://github.com/pytorch/fairseq

Results: wav2vec2.0

Word Error Rate (WER)
for different transliteration schemes
for the wav2vec2.0 architecture.
For Korean, Character Error Rate (CER)
also reported in parentheses.

Note: We dropped Tgt2Eng since it fared
badly in the Transformer expts

Results: wav2vec2.0

● wav2vec SelfSup much better than
Transformer NoPre

● Our method clearly outperforms
EngPre in most settings on all
languages

● Major exception is Amharic; we
investigate this further

Our approach works even on a SOTA system like wav2vec that leverages powerful pretrained models!

Analysis and Discussions
Under what conditions is our approach most effective?

We propose that two properties should simultaneously hold:

● High acoustic consistency of the transliteration library
● High phonological overlap between the two languages

Analysis: Methodology
1. Acoustic Consistency of Transliterations:

○ Convert original English text to IPA (phones) using a g2p tool (epitran)
○ Convert transliterated text to IPA using native-language g2p tools
○ Compute PER between the two IPA sequences

2. Phonological Similarity between Languages:
○ Compute unigram distribution of phones in English and in low-resource language
○ Compute KL divergence between the two distributions

https://github.com/dmort27/epitran

Analysis: Results

● For Hindi and Telugu, where KL dist is low and PER is low, we get consistent improvements in results
● Amharic has a large PER, which may explain its poor performance. However, more investigation is

needed, since its KL dist is very low.

Analysis: Effect of Related Languages

Pretraining on a related language helps!

WERs for Gujarati when pretrained using two approaches:
Hin2Tgt: Pretrain on 40 hrs of Hindi transliterated to Gujarati

Eng2Tgt40: Pretrain on 40 hrs of English transliterated to Gujarati

Analysis: EngPre vs Eng2Tgt
Our analysis indicates that:

In EngPre, pretraining lets the model learn sound clusters, and then the fine-tuning
phase is used to learn character labels for each such sound, in addition to learning
new sounds which are missing in the English speech data.

In Eng2Tgt, the fine-tuning phase focuses more on the second aspect (learning
new sounds) as the pretraining phase already attaches character labels to the
sound clusters.

Future Work
● Extending this approach to multilingual ASR.
● Extending this approach to languages with no transliteration systems.

Thank you!

